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The flow in a two-dimensional curved channel driven by an azimuthal pressure 
gradient can become linearly unstable owing to axisymmetric perturbations and/or 
non-axisymmetric perturbations depending on the curvature of the channel and the 
Reynolds number. For a particular small value of curvature, the critical Reynolds 
number for both these perturbations becomes identical. I n  the neighbourhood of this 
curvature value and critical Reynolds number, non-linear interactions occur between 
these perturbations. The Stuart-Watson approach is used to derive two coupled 
Landau equations for the amplitudes of these perturbations. The stability of the 
various possible states of these perturbations is shown through bifurcation diagrams. 
Emphasis is given to those cases that have relevance to external flows. 

1. Introduction 
Our concern is with the interaction of Tollmien-Schlichting waves induced by 

viscosity with Taylor-Gortler vortices driven by centrifugal effects. This interaction 
problem is motivated by many flows of practical importance where both modes of 
instability can occur. Perhaps the flow that has generated most of the interest in this 
topic is that associated with a laminar-flow wing, see for example Harvey & Pride 
(1982). The interaction problem of these instabilities is important because, if for 
example finite-amplitude vortices induce the growth of Tollmien-Schlichting waves, 
it is possible that premature transition of the flow might occur. 

There have been many experiments that  have reported on the breakdown of 
laminar boundary layers over concave walls. Thus, for example Bippes & Gortler 
(1972) and Peerhossaini & Wesfried (1987) have shown that initially steady Gortler 
vortices suffer a secondary instability to a wave-like disturbance travelling in the 
flow direction. Dependent on the flow conditions this secondary instability could 
either be a wavy vortex instability of the type discussed by Hall & Mackerrell(1988), 
a Rayleigh instability associated with locally inflexional profiles in the spanwise 
direction or a Tollmien-Schlichting wave. We expect the first two situations to occur 
when the basic state is linearly much more unstable to centrifugal instabilities than 
i t  is to  Tollmien-Schlichting waves. Here we shall concern ourselves with a flow in 
which the two instability mechanisms become operational a t  about the same 
Reynolds number. 

Thus we investigate the flow a t  finite Reynolds numbers in a slightly curved 
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channel. We hope that results obtained for this problem will have some relevance to 
the external case but at any rate this is in itself a flow of some practical importance, 
particularly since the curvature needed t'o produce the interactions we consider turns 
out to be extremely small. The main simplification is that the basic state for channel 
flows is fully developed so that we do not have to overcome the technical difficulties 
associated with boundary-layer growth. This enables us to do a calculation a t  finite 
Reynolds numbers and therefore we can always consider the most unstable 
disturbances available, unlike the external case when the only self-consistent 
asymptotic theories require a large-Reynolds-number approximation. 

In plane channel flow, instability arises owing to the amplification of Tollmien- 
Schlichting (TS) waves. As these waves grow, they modify the mean flow, 
produce higher harmonics, interact with other waves, and probably produce 
turbulence. The initial stage of development of these waves from the linear regime to 
the weakly nonlinear domain was analysed by Stuart (1958) who derived the Landau 
equation for the temporal development of the TS wave. The presence of the cubic 
nonlinearity in this equation modifies the otherwise exponential variation inherent 
in a linear theory. This theory was able to explain the existence of an equilibrium 
finite-amplitude perturbation in certain regions near the neutral curve. Moreover, 
there is a possibility of the existence of an unstable finite equilibrium amplitude and 
it can occur when the basic state is linearly stable. Thus a sufficiently large 
perturbation to the basic state is linearly stable. Thus a sufficiently large perturbation 
to the basic state leads to the unbounded nonlinear growth of the disturbance and 
the concept of a threshold amplitude response. 

Taylor (1923) was the first to consider the instabilities that arise owing to the 
curvature of streamlines. He investigated the flow between two concentric cylinders 
due to the rotation of the inner cylinder with the outer cylinder stationary. He found 
that the flow becomes unstable when the parameter Re(d/R,); (now referred to as the 
Taylor number) exceeds a value of about 41. Here Ri is the radius of the inner 
cylinder, d ( < Ri) is the gap width of the cylinders, and Re is the Reynolds number 
based on the speed of the inner cylinder and d .  The instability that appears as the 
speed of the inner cylinder exceeds the critical value is in the form of toroidal 
vortices. These vortices are modelled theoretically by an axisymmetric perturbation 
and they are stationary when they first appear. 

Dean (1928) also investigated the instability in a curved channel due to the curved 
streamlines (see figure 1 ) .  The flow in his experiment was generated by an azimuthal 
pressure gradient. The channel is formed by portions of two concentric cylinders 
having channel width d 6 Ri. Basing the Reynolds number Re on the mean speed of 
the unperturbed flow, Dean (1928) and Walowit, Tsao & DiPrima (1964) found that 
instability arises when Re(d/R,)t exceeds a value of about 36. Here too, as in Taylor's 
experiment, only axisymmetric disturbances were considered. 

In  a detailed analysis of the linear stability of curved channel flow, Gibson & Cook 
(1974) argued that in a curved channel of very small curvature non-axisymmetric 
disturbances can play a significant role in destabilizing the mean flow. Such 
perturbations are analogous to TS waves in a plane channel. Their linear stability 
analysis shows that for channels with very small curvature, the critical Reynolds 
number for the TS waves is almost independent of 7,  (7 = Ri/R,, R, = radius of outer 
wall), and it approximates very closely the corresponding value for a plane channel. 
The critical Reynolds number for the axisymmetric instability (Gortler vortices), on 
the other hand, is quite sensitive to 7 for 7 close to 1 (figure 2). For a particular value 
of 7 = vC, the critical Reynolds numbers for these instabilities are identical. For a 
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FIGURE 1. Curved channel with flow in the azimuthal direction. The walls are parallel t o  the x-axis. 

Radius ratio ?/ = R,/R, and channel width d = R,- Ri. 
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FIGURE 2. Critical Reynolds number versus h for Gortler and TS perturbations. At the cross-over 
point of these curves, Re, = 8 x 5772.2 and A, = 2.179 x This figure is a schematic adaptation of 
figure 1 in Gibson & Cook (1974). 

slightly wider channel, the critical Reynolds number for the Gortler instability is 
lower than the almost constant critical Reynolds number for the TS perturbation. 
For a narrower channel, the critical Reynolds number for the Gortler instability is 
higher. It is, therefore, reasonable to  expect that near vc both perturbations could 
exist simultaneously and thereby interact with each other. 

The purpose of this paper is to analyse the weakly nonlinear interaction of these 
two instabilities (one axisymmetric and the other non-axisymmetric) which arise 
when ths radius ratio is nearly vc .  We use a multiple-scale version of the 
Stuart-Watson-method approach to derive the two coupled ordinary differential 
equations for the amplitudes of these perturbations. While these two equations 
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cannot be solved explicitly, they nevertheless yield significant information about the 
various possible bifurcations that can take place in the presence of these 
perturbations. Moreover, the stability properties of the equilibrium states can be 
deduced. 

When considering a growing boundary layer, a self-consistent analysis of wave 
interactions within it requires the application of the triple-deck theory as shown by 
Hall & Smith (1984). I n  channel flows, however, we do not need to consider the 
effects of boundary-layer growth, thereby greatly simplifying the analysis while still 
giving a qualitative picture of what might happen in an unbounded flow. It is in this 
context that we wish to  study the Gortler/TS interaction in a curved channel. This 
study may be viewed as an extension of the work of Gibson & Cook (1974) into the 
weakly nonlinear regime. 

2. Mean flow and perturbation equations 
Let ( r ,  8, z )  be the cylindrical coordinates with the axis of the concentric walls along 

the z-axis, and Ri and R, the radii of the inner and outer cylinder respectively (see 
figure 1). 

When the flow between the concentric walls is maintained by a constant azimuthal 
pressure gradient aP/ae ( < 0 ) ,  the solution of the momentum equations yields 

u ( r )  = W ( r )  = 0, (2.1) 

where U(r )  and W ( r )  are the radial and axial mean velocities, respectively. The 
azimuthal velocity is give explicitly by 

where v and p are the kinematic viscosity and density, respectively, and 7 = Ri/R,. 
Here the distance from the axis is normalized with respect to R,, so that r varies 
from 7 at the inner radius to 1 a t  the outer radius. 

A channel with small curvature will behave locally like a plane channel, and for it 
the azimuthal velocity V ( r )  should approach the familiar parabolic shape. As 9 
approaches 1, the velocity 

R, ap 
V ( r )  = ---[h2C(l-C)], 

2vp a8 

R, ap 
2vpae 

V =---A2 where 

and h and 5 are given by 
h = (1-q), r = A C + r .  

( 2 . 5 )  

(2.6a, b )  

Thus 5 varies from 0 to  1 as r varies from 7 to 1. Note that in this limit, V, is four 
times the centreline velocity. 

Based on (2.3)-(2.6), (2.2) can be simply expressed as 

where 
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The fully nonlinear disturbance equations for the radial velocity u, azimuthal 
velocity v, axial velocity w, and the continuity equation are as follows : 

ap - 
ac 
- -~ - 

(2.10) 

V aw + h Re - a, w + u - + wa, w, (2.1 1 )  
r ac 

and 
au A R~ 
- = --u--ha,v-a,w, ac r 

(2.12) 

where the quantities that appear in (2.9)-(2.12) are non-dimensionalized versions of 
primed physical quantities shown below : 

pressure P=- 

radial position r=r'/R,=hc+r ( q < r < l , O < < < l ) ,  

P' 
0%' 

axial position 

azimuthal position 

time 

radial velocity 

axial velocity 

azimuthal velocity v = V'/Vm 

Note that u' and w' are scaled with respect to the diffusive velocity scale while v' 
is scaled with respect to the convective velocity scale. The mean flow is (0, V, f ( r ) ,  0) 
and the non-dimensionalized perturbation is (u, v, w )  in the ( r ,  6,z)-direction. The 
Reynolds number 

where d = R,- Ri. 
Re = V,d/v, 

19-2 
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The effect of the purely azimuthal (non-axisymmetric) and the purely axial 
(axisymmetric) perturbation can be modelled by a general expression for the 
perturbation proportional to exp [ut + i(kz + m8)], where the non-dimensional axial 
wavenumber k = k'd, the non-dimensional azimuthal wave-number m = m', and the 
non-dimensional complex growth rate (T = u'/( V,/R,) = (Tn + icrl. The partial de- 
rivatives a,, a,, a, can now be replaced by cr, ik, im respectively within the linear part 
of the equations (2.9)-(2.12). The wavenumbers k and m are real. 

The four equations of motion can be written as a set of six first-order ordinary 
differential equations, as was done by Eagles (1971). Thus we write 

(2.13) 

so that the equations can be written as 

(2.14) 
a 

- q  = @q+n,  ac 
where @ is a 6 x 6 matrix representing the linear contribution and n is a six-element 
vector containing the nonlinear terms. The last three elements of the vectors q and 
n are zero a t  the two channel walls. The terms representing the linear and nonlinear 
contributions will be discussed in the next section after an explicit expression for q 
is given. It should be noted that our equation set is the same as that of Eagles (1971) 
except for different base flow and boundary conditions. It may be noted that the 
continuity equation (2.12) has been used to write the momentum equations in terms 
of the components of q.  

3. Perturbation expansion for nonlinear wave interaction 
The perturbation to the mean flow is expressed in the form 

4 = s{(aE+bF)+c.c.)+t.2{(cE2+d~2+g~~*+hEE')+e.c.) 

+ e'{ j E o  + kFo} + e3{ ( IE3 + mF3 + nEZF* +pE2F 

+ppEF2+rE*F2)+c.c.}+e3((sE+tF)+c.c.}+O(e4), (3.1) 

where q is the perturbation vector given by (2.13), C.C. represents the complex 
conjugate of the terms in the preceding parentheses, e is a small expansion 
parameter, and * represents complex conjugation. 

Here, E = exp (ikz), (3.2) 

(3.3) 

and cr = crn+icr,, (3.4) 

uH. = 0. (3.5) 

E' = exp (im8) exp (crt), 

with 

aE and bF represent the Gortler and TS instabilities respectively. The vectors a 
and b give the shape and the growth rate of these instabilities. Other terms represent 
higher harmonics and the mean flow modification which arise owing to the quadratic 
nonlinearity in the equations. 

The coefficients c, d,  g and h are due to the direct interaction between the TS and 
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the Gortler instabilities. As self-interaction occurs for each of these instabilities, the 
mean flow profile itself becomes modified through the generation of effects 
represented by j and k. The terms a t  ordcr e3 arise owing to the interactions of the 
terms of order e2 and the Gortler and TS perturbations. 

As will become clear later, it  will not be necessary to solve for the unknown 
coeficients a t  order e3. By using the solvability condition for the equations governing 
s and t ,  the evolution equations for the amplitude of the Gortler (a )  and of the TS 
(b)  waves can be found. The method of multiple-scales used in this paper for 
obtaining these evolution equations follows closely that suggested by Matkowsky 
(1970). 

Throughout, we shall require that the last three components of the vectors a-t are 
zero a t  the two curved walls in order to satisfy the zero-velocity boundary 
conditions. 

It has been shown by Stuart (1958) that the growth rate of a small-amplitude 
disturbance a t  a Reynolds number O(e2)  away from a neutral curve is O(e2) .  This 
motivates the scaling for the time and Reynolds number in what follows. 

For the perturbation expansion (3. l ) ,  the appropriate slower time variable is 7 

defined by 
7 = €2t, (3.6) 

where e is the same small expansion parameter used earlier. This gives 

a a  a 
at at a7 - -+ - + € 2 - .  (3.7) 

The Reynolds number Re is expanded about a value Re, on the neutral stability 
curve so that 

Re = Re, + e2Re,. (3.8) 

Hence, 

and 

(3.9) 

(3.10) 

Returning to (3.1).  we now regard all the vectors a to t as functions of both 5 
and 7 .  For example: 

a+A(C)X(7) ,  b-tB(5) Y(7) ,  

which states that in the neighbourhood of the neutral stability curves the solutions 
for the linear problem, A ( [ )  and B($, adequately represent the shape of the 
perturbations in the weakly nonlinear regime. The amplitudes of these perturbations, 
X ( 7 )  and Y ( T ) ,  depend on the slowly varying time variable 7. The vector 

A = (a1,a2>a3>a4,u5,a6)T 

and = ( b l >  b , 2  b3, b,> bij> 

The remaining vectors can be represented similarly, e.g. 

c+ C(5)X2(7 ) ,  h + f % ) X ( 7 )  Y (7 ) .  

s + s(5) 1X(7)I2 X(7h t + T(5) I Y(7)I2 Y(7)  
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By substituting (3.1) and (3.7)-(3.10) into (2.13), we obtain an equation for q of the 
form 

L,, L,, T,, T,,, T,, are linear operators, given by 6 x 6 matrices. Their dependence 
on the differential operators a,,a,,a, and a, is indicated within the square 
brackets. Both Nl[a,, a,] {q x q} and N,[a,, a,] {q x q} represent nonlinear terms 
containing the operators a, and a,. {q x q} symbolizes quadratic terms comprising the 
components of q. From here onwards we shall refer to Nl[i3,, a,] (4 x q} by N,. Since 
in the analysis of (3.11) we shall only be concerned with terms of O(e3) ,  it will not be 
necessary to consider the term e2N2[az, a,] {q x q} which is O(e4). The elements of the 
operators are given explicitly in Appendix A. 

To determine the linear stability problem for the Gortler and the TS perturbations 
acting individually, terms of O(c) need to be considered. From these terms, those 
with coefficient E will give the linear stability perturbation equations for the Gortler 
disturbance. Similarly, the terms with coefficient F will give the equations for the TS 
disturbance. 

At O(e)  
(i) The terms with coefficient E give 

dA 
- = L,[ik, 01 A +T,[O] A (3.12) 
d5 

for the Gortler perturbation. 

(ii) The terms with coefficient F give 

d B  
- = L,[O, im] B+T,[iv,] B (3.13) 
d5 

for the Tollmien-Schlichting perturbation. 
From these equations, vectors A and B can be determined. Note the difference in 

the parameters of the operators in (i) and (ii), particularly the fact that a, = 0 for the 
Gortler while for the TS, a, = ivI. In  both cases we are considering neutrally stable 
perturbations. 

When collecting terms of O(e2)  for determining vectors C-K, the operators L,, T,,, 
T,, can be neglected because when they operate on q, contributions of O ( 2 )  are 
produced. As these operators are already pre-multiplied by e2, the net contribution 
from these terms will be O(e4) and hence negligible. In  the equations for C-K that 
follow, the non-linear contributions are contained in N,. Of the six elements of the 
vector representing the contribution from N,, only the first three (n,, n,, n3) are non- 
zero, and these are listed following each equation. The discussion following (3.5) gives 
thc physical basis for the presence of the vectors C-K. 

At O ( 2 )  

(i) The terms with coefficient E 2  give 

- = L,[Bik,O] C+T,[O] C+nonlinear contribution from N,, 
dC 

(3.14) 
d5 
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where 

n2 = a,a,+a,a,h+ika,a,, 

n3 = a, a, + ika:. 

(ii) The terms with coefficient F2 give 

- _  - L,[O, 2im] D+T,[2ic~,] D+nonlinear contribution from N,, 
dC 

(3.15) 
dD 

where 

n3 = h-imb,b,+b,b,. Re, 
r 

(iii) The terms with coefficient EF* give 

- = L,[ik, - im] G + TI[ - icr,] G + nonlinear contribution from N,, 
dG 

(3.16) 
d5 

where 
2a,b: ima b ikbza, ikb,a, ima,b, 2a,b,* 
Reir Re,r ReEh Reih Re,r 
--A+--- +--- +-}, r 

a, b,* + b: a2 - imRe, a, b,* 

n3 = - imhR, a, b: + a4 b$ + b: a, + ikb: as. 

ika, b: 
n2 = h r +hJ 

(iv) The terms with coefficient EF give 

-- - L,[ik, im] H+T,[ia,] W+nonlinear contribution from N,, 
dC 

(3.17) 
dH 

where 

a, imb, 2a, b5], 
b, ika, + ~ - - b, ika, + - 1 1 

Re: h Re,r r 

n2 = Reoh{ Re, h r Re,r 

Re, h 
r 

n3 = - ima, b, + a4 b, + b, a3 + ika, b,. 

(v) The terms with coefficient Eo give 

- d J =  LJO, 01 J+T,[O] J+nonlinear contribution from N,, (3.18) 
d5 
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h 
r 

n, = a, uz + uz a2 +- (a4 u,* + u: u5) + ik(u5 u,* -a,* u,), 

n3 = a, u,* + uz u3. 

(vi) The terms with coefficient Fo give 

(3.19) 
d K  
- = L,[O, 01 K+T,[O] K +  nonlinear contribution from N,, 
dc 

where 

h 
r 

n2 = b, b,* + b: b, +-{b, b,* + bz b5} ,  

n3 = l { i m b , *  b, - imb, bz) + b, bz + bz b,. 
Re h 

r 

So far we have collected terms with coefficient E and obtained the equations for the 
spatial dependence of the neutrally stable Gort,ler and TS perturbations, followed by 
collecting terms that have coefficient e2. At O(e3) ,  we shall see that only the equations 
for S and T need to be considered for obtaining t,he time evolution of the Gortler and 
TS amplitudes. s and t are functions of 6 and r. It will be seen from the form of the 
equations for s and t that  the temporal dependence does not cancel out ; indeed, it is 
this very property that allows us to get time-evolution equations for X ( 7 )  and 

Collecting terms of O(e3)  with coefficient E ,  and with coefficient F ,  we obtain the 
Y(7) .  

equations for S and T: 

- = L,[ik, 01 S+T,[O] S+ L,[ik, 01 AX (7) +T,,[O] AX (7) 
i3S 

ac 
+ T,,[a,] AX (7) +contribution from N, (3.20) 

and 

-- - L,[O, im] T+T,[ir,] T+ L,[O, im] BY(7) +T,,[ir,]BY(r) i3T 

x 
+T,,[a,] BY(7) +contribution from N,. (3.21) 

The contributions from N, to  both these equations involve a very large number of 
terms and are therefore not written explicitly a t  this stage. They will however appear 
in the final equations for X ( 7 )  and Y(7) .  

The homogeneous parts of (3.20) and (3.21) are the same as those of (3.12) and 
(3.13) for A and B respectively. In order that  the non-homogeneous equations (3.20) 
and (3.21) have solutions, the non-homogeneous parts of the equations should be 
orthogonal to the adjoint column vectors A" and 8 respectively. These vectors are 
solutions of the following equations : 

- = -[L,[ilc,O]+T,[O]]TA", 
dA 

- = - [ L,[O, im] + T,[ia,]]T 8, d B  

dc 

dC 

(3.22) 

(3.23) 
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where 2 = (ti,, ii,, ti,, d,, ti,, ti,)T and B = (b",, b",, K 3 ,  g4, C5, b"JT. Unlike the boundary 
conditions for the equations for A and B where the last three of their components are 
zero, here the first three components of A" and B are zero at  the boundaries. 

Using the orthogonality condition, we obtain the following equations for X ( 7 )  and 
Y ( r ) :  

i,' d[[jTL,[ik, 01 AX(7) + 2TT22[a,] AX(7) + A"T(contribution from N,)] = 0 

(3.24) 
and 

J;d[[@L,[O, im] BY(r)+@T,,[icr,] BY(7) 

+ @T,,[a,] BY(7) + BT(contribution from N,)] = 0. (3.25) 

The terms representing A" (contribution from N,) and 3 (contribution from N,) 
have been obtained but, owing to the lengthy algebra, are not listed here but given 
in Appendix B. After integrating over 5, these equations can be written as 

-- - Re,p,X(7) +S,X(7)IX(7)12+rlX(7)1Y(?)12 (3.26) 

and -_ dY(r)  - Re,p, Y(7)+82 Y(T)IX(T)I'++~, Y(r)IY(7)I2, (3.27) 

where p f , S t ,  and r i  (i = 1,2),  are coefficients obtained from (3.24) and (3.25). Re, is 
a measure of the deviation from the neutral stability curve as is given by (3.8). It 
appears in (3.26) and (3.27) because it is a common factor in matrix L, in (3.24) and 
(3.25). Equations (3.26) and (3.27) are the coupled Landau equations which 
determine the time evolution of the amplitudes of the Gortler and TS perturbations. 
The analysis of these equations will be presented after the next section. The following 
section gives a brief description of the numerical method used for obtaining the 
coefficients A-K. All the terms in the perturbation expansion have been verified by 
using the symbolic manipulation language MACSYMA. 

d7 

dr  

4. Computation of the coefficients 
The equations governing the {-dependence of the coefficients A-K are given in 

the previous section. A and B are described by a set of homogeneous ordinary 
differential equations while the equations for the remaining amplitudes are non- 
homogeneous. 

A fourth-order finite-difference scheme (Malik, Chuang & Hussaini 1982) was used 
to solve these equations. For details of the method, the reader may refer to  Malik et 
al. (1982) and Hall & Malik (1986). The calculations were performed on a non- 
uniform grid which clusters the points near the walls. A suitable distribution of grid 
points was obtained using the relation 

[$ = $(sin (+xxi) + 1 )  (4.1) 

(4.2) where x. = - [Si-1-N] ( 1 G i G N )  
' N-1 

and N is the total number of grid points. 
In  order to determine the vectors A-K to 3-digit accuracy, 51 grid points were 

sufficient for the range of Reynolds number and wavenumbers that we considered. 
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FIGURE 3. Neutral stability curve for the Gortler perturbation : Reynolds number versus axial 
wavenumber k. For notation see figure 5. 

14 

12 

10 

Re x lo-’ 

8 

6 

4 

rsu 

I I I I I J  

5 6 7 8 9 1 0 1 1  

m x 

FIGURE 4. Neutral stability curve for the Tollmien-Schlichting perturbation : Reynolds number 
versus azimuthal wavenumber m. For notation see figure 5.  

The familiar neutral stability curves for the linear Gortler and TS perturbations 
are presented in figures 3 and 4, respectively. Here, the generally accepted 
convention of labelling one of the arms of the stability curve as ‘lower ’ and the other 
as ‘upper’ is used. To analyse the different kinds of possible interactions between a 
Gortler and a TS perturbation at an arbitrary Reynolds number Re, consider the 
schematic diagram of figure 5. (Refer to this figure and its caption for the 
abbreviations GL, GU, TSL, TSU used in what follows.) A Gortler perturbation GL 
with wavenumber k, and Reynolds number Re slightly different from Re, (Re = 

Re,+e2Re,) can interact with a TS wave with the same Reynolds number but with 
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FIGURE 5. The two neutral stability curves: (a) Gortler neutral stability curve; (b) TS neutral 
stability curve for h = A,. For this case, the critical Reynolds number is identical for the two 
perturbations. GL and GU refer to the lower and upper arms of the Gortler stability curve. TSL 
and TSU refer to the lower and upper arms of the Tollmien-Schlichting stability curve. 

wavenumbers m, or rn, corresponding to TSL and TSU respectively. Similarly, GU 
with wavenumber k, can interact with either TSL or TSU. So, in all there are four 
possible interactions. 

It can be seen from figure 2 that for h = 1 -q  = 1 -qc = hc = 2.179 x lop5, the 
critical Reynolds number for the Gortler and TS perturbations is 8 x 5772.2 z 46176, 
where 5772.2 is the critical Reynolds number for a plane channel flow based on half- 
channel width and centreline velocity (Orszag 1971). The factor 8 is because our 
Reynolds number is based on full channel width and V, z 4 (centreline velocity). It 
is for this value of h that we compute the amplitudes A-Kfor 46 176 < Re, < 120000. 
This range is probably sufficient to reveal the possible interactions. Results for other 
values of h in the neighbourhood of A, can be obtained using a simple argument that 
we shall present in the next section. 

The components of A-K for each value of Re, are used to compute the coefficients 
p,, S,, q,, p,, 6, and qz of the two Landau equations. For computing these coefficients, 
vectors A and B need to be normalized. This was done by dividing A by its centreline 
azimuthal component (centreline value of as ) ,  and dividing B by its centreline radial 
velocity component (centreline value of b4) .  Since p1 and S, do not depend on the 
presence of a TS perturbation, each of these has a unique value for each point on the 
neutral stability curve. When both GL and GU are considered for a fixed Reynolds 
number, /3, and S, will each have different values on the two arms of the neutral 
stability wave, corresponding to the different wavenumbers. A similar argument 
applies to pz and qz ,  which are independent of the Gortler perturbation. These 
coefficients will be further discussed in the next section. 

5. Solution of the Landau equations 
In this section, we analyse the possible interactions by studying the properties of 

the coupled Landau equations. These properties are displayed in the form of 
bifurcation diagrams which show the amplitudes of the equilibrium states and their 
stability properties. 
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FIQURE 6. Reynolds number versus growth rate p, of the Gortler perturbation. 

- 
- 2 0  2 4 6  8 

p2 x 10s 

FIGURE 7. Reynolds number versus growth rate p2 of the TS perturbation. Note the negative p2 
for part of TSU. 

Equations (3.26) and (3.27) can be written in terms of 1x1, and IYI2: 

1 dlXI2 
2 dr ~eiPi,IXI2+SiRIXI2IXI2+riRIXI2IYI2, (5.1) --= 

where PIR, P2*, SIR, S,,, rlR and r2,  are real parts of the corresponding Landau 
coefficient, e.g. p, = PZR + ip,,. It is found that pi is real and so PI = Pi,. By suitably 
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0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

71, x 

FIGURE 8. Reynolds number versus for perturbations corresponding to the two arms GL and GU 
of t he  Gortler stability curve interacting with TSL and TSU: (a )  GL interacting with TSL and 
TSU; ( b )  GU interacting with TSL and TSU. 

scaling the amplitudes X and Y it is possible to make 6, = - 1 and lrzl = 1 so as to 
facilitate the analysis of the equations. From here on we shall drop the subscript R 
because all the coefficients of the equations are real. 

The growth rates with respect to 7 (for Re, = 1 )  of the Gortler (p,) and TS (pZ) 
perturbations are shown in figures 6 and 7 respectively. In figure 7 it should be noted 
that the negative values of pZ correspond to TSU in figure 4. 

There are two graphs each for 7, and 6, depending on the types of possible 
interaction between a Gortler and TS wave. Figure 8 ( a )  shows 7, versus Reynolds 
number for the interaction of GL with TSL and TSU and figure 8 ( b )  displays the 
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FIGURE 9. Reynolds number versus 8, for perturbations corresponding to the two arms GL and 
GU of the Gortler stability curve interacting with TSL and TSU: (a) GL interacting with TSL and 
TSU; (6) GU interacting with TSL and TSU. 

l2 TSL 

Re x 

Tsul 

-0.2 0 0.2 0.4 0.6 0.8 

7 2  

FIGURE 10. Reynolds number versus T ~ .  

same variables for the interaction of GU with TSL and TSU. Figure 9 (a  and b)  gives 
graphs for 6, for the same interactions as given in figure 8 ( a  and 6 ) .  Figure 10 shows 
a graph of Reynolds number versus T ~ .  

The graphs of the coefficients of the Landau equations mentioned in the last two 
paragraphs have been computed for h = A, = 2.179 x lop5, which corresponds to a 
channel with very small curvature and one for which the critical Reynolds numbers 
for the Gortler and TS perturbations are identical. I n  what follows we shall extend 
the analysis to channels for h in the neighbourhood of A,. 
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In  (5.1) and (5 .2 )  the coefficients of IXI2 and IYI2 are RelPl and Re1p, respectively, 
which shows that the linear growth rates of 1x1' and lYI2 are proportional to the 
deviation Re, from Re, (Reynolds number = Re, + e2Rel). Similarly, i t  is reasonable 
to assume a linear dependence of the growth rate on the deviation from the radius 
ratio yC. If we write 

A = A,+e2A 

as a perturbation from A, and take E to be the expansion parameter given by (3.8), 
the growth rates of IXI2 and IYI2 would also be linearly dependent on A .  The effect 
of the deviation from A, on the coefficients of the nonlinear terms of the Landau 
equations is of a higher order than we are concerned with and so we shall only 
consider its effect on the growth rate through the parameter A .  

Equations (5.1) and (5 .2)  can now be written as 

(5.3) 

(5.4) 

The zero-growth-rate curves for 1x1' and lYI2 are straight lines in the ( A ,  Rl)-plane, 
passing through the origin and having slopes of ( -y1/Pl) and ( - y 2 / P z )  respectively. 
Numerical computations show the first slope to be of order - lo9 and the second to 
be approximately zero; therefore in what follows, we take y2 = 0. The large value of 
the first slope is due to our different scalings for the three velocity components of 
the Gortler perturbation. To compute these slopes, the wavenumbers for the Gortler 
and TS waves were fixed a t  their values for Re, = 0, A = 0, which is equivalent to 
Re = Re, and A = A,. The slopes were found for this neighbourhood for these fixed 
wavenumbers. As can be expected, the slopes are of the same order of magnitude as 
those of the curves for the critical Reynolds number versus h given by Gibson & Cook 
(see figure 2). Note that the wavenumbers change along their curves, while in our case 
we keep them constant. We computed the change in Reynolds number with change 
in A at  the cross-over point shown in figure 2. 

1;) 1x12 = 0, IYI2 = 0, (5.5a, b )  

There are four possible steady-state solutions to (5.3) and (5.4) : 

(ii) 

(iii) P 2  IX12 = 0, I YI2 = --Re,, 
92 

- 91 P 2  Re, + 72 P1 Re1 + - 

91 82 -4 92 
1x12 = 29, 

(5.6a, b )  

(5.7a, b )  

( 5 . 8 ~ )  

(5 .8b)  

To assess the stability of these states, i t  is necessary to linearize the equations 
about these states. The reader may refer to Boyce & DiPrima (1977) for a discussion 
of the stability analysis of such coupled equations. 
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FIGURE 11. Bifurcation diagrams for the interaction of the Gortler and TS perturbations for 
Reynolds number a t  or close to Re, where v1/v2 > pl/Bz > SJS, and qi > 0, P, > 0, 6, < 0 (i = 1 , 2 ) .  
-, Stable equilibrium states; -----, unstable equilibrium states. (a )  ( A  > 0). The GGrtler mode 
is the most linearly unstable mode in this case. The TS mode is subcritically unstable. (6) ( A  < 0). 
The values of Re, at P and Q are respectively 

Table 1 summarizes the values of Pr,qa,  and 6,(i = 1,2) for the four possible 
interactions. This tabulation is mainly to facilitate the analysis and discussion of 
these interactions ; other values can be obtained from the graphs for these quantities. 
This table of results can be used to show that many possible equilibrium states exist 
depending on the Reynolds number. Here we shall concentrate on the three cases 
that we believe to be of most practical importance. Although data are obtained for 
TSU, we da not carry out the analysis for this case because for external flows its 
consideration is not relevant ; here only TSL needs analysis. The bifurcation pictures 
for the other cases can be found in, say, Keener (1976) or Guckenheimer & Holmes 
(1983). 

The three cases we consider are: 
( a )  Interaction of Gortler and TS waves for h = h,+e2A and Re = Re,+e2Re,. 

Here we consider the cases when the Reynolds number is at or very close to the 
critical value for both perturbations, and with wavenumbers corresponding to the 
critical Reynolds number and its vicinity. Representative values for this case can be 
found near the end of Sections A-D in table 1. 

( b )  Interaction of TSL with GL. 
(c )  Interaction of TSL with GU. 
Case ( a )  In  this case, it is found that ql /qz  > P,/Pz > 6,/6,, 6, < 0, qi > 0, Pi > 0 for 

i = 1,2. For A > 0, the Gortler mode is the most unstable on the basis of linear 
theory and for A < 0 the TS wave is the most unstable. Refer to figure 2 .  
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TS mode /- Mixed mode 

-41/81 
R ,  

FIGURE 12. Bifurcations diagrams for the interaction of GL and TSL where ?/ , /TZ  > P,/Pz > SJS, 
and qt < 0, Pi > 0,  Si < 0 (i = 1,2) .  -, Stable equilibrium states ; ---, unstable equilibrium 
states. (a) (A < 0 ) .  The TS mode is the most linearly unstable mode in this case. The value of 
Re, at Q is 

- 4 J P 1  

&, P 2  

Re, = 
I---  4 Pl 

( b )  ( A  > 0). The Gortler mode is the most linearly unstable mode in this case. The value of Re, at 
P is 

-41IP1 

72 8, 

Re, = 
I--- 71 Pz 

The solution (5.5a, b)  exists for all values of Re, whilst (5.6a, b )  and (5.7a, b )  exist 
for Re, > - Ayl//3, and Re, < 0 respectively. The mixed-mode solution (5.8a, b)  can 
exist for either a finite, zero or semi-infinite range of values of Re, depending on pi, 
~ ~ , 8 ~ .  In  the present case, we find that if A > 0, the mixed mode does not exist. 
However, for A < 0 the mixed mode exists for a finite range of values of Re, including 
the origin. The bifurcation diagrams for this case are shown in figure ( 1  1 a,  b ) .  In  this 
figure, continuous and broken lines correspond to stable and unstable solutions of the 
Landau equations respectively. We note that the TS mode can never be in stable 
equilibrium without the presence of a Gortler mode. In  contrast to this situation, the 
Gortler mode can exist alone and be stable to small perturbations. However, the 
finite-amplitude states in these figures are unstable to sufficiently large perturbations. 
The latter result is easily found by a phase-plane analysis of the amplitude equations. 
This unbounded growth leads to 1x1 and I YI ‘blowing up’ like It,-tl-; for some value 
of to. Thus this instability leads to 1x1 and IYI terminating in a finite time singularity 
as in the case for a TS wave in a straight channel. Thus, the threshold-amplitude 
phenomenon of Meksyn & Stuart (1951) persists in the presence of Gortler vortices. 
It is not possible to quantify the effect of the Gortler mode on the threshold 
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- 4 1 l P 1  

Rl 

FIGURE 13. Bifurcation diagrams for the interaction of GU and TSL where -q1/v2 > P1/P2 > 
8J8, and ql > 0, v2 < 0, /3, > 0, 8, < 0 (i = 1,2). -, Stable equilibrium states; ---, unstable 
equilibrium states. (a) ( A  < 0). The TS is the most linearly unstable mode in this case. The values of 
Re, a t  P and Q are respectively: 

- 4 11/31 
4 P 2  

32 P1 4 P1 

, Re,= - AY 1lPl Re, = 
1 _ _ _  I--- 31 Pz 

( b )  ( A  > 0). The Gortler mode is the most linearly unstable mode in this case. 

amplitude. However, a phase-plane analysis of the Landau equations shows that the 
Gortler mode significantly reduces the size of the finite-amplitude perturbation 
required to induce the finite-time breakdown of the equations. In that sense, the 
Gortler mode has a significant effect on the subcritical breakdown of the TS waves. 
However, for a sufficiently low level of background noise, we should expect that a 
stationary Gortler mode could be set up by slowly increasing the Reynolds 
number. 

Case (b)  Here we consider the interaction of TSL with GL. In  this case, other modes 
of instability can occur a t  lower Reynolds number but since this situation is relevant 
to the corresponding external-boundary-layer problem we believe it to be of some 
importance. This is because here, as in Case ( c ) ,  the TS wave now bifurcates 
supercritically and the possibility of stable mixed-mode solutions must now be 
investigated. Here we concentrate on the interaction of such a mode with a GL vortex. 
Case ( c )  will be concerned with the interaction with a GU vortex. 

The parameters 6,, a,, ql, and v Z  are all negative and satisfy 

For this case the bifurcation pictures are shown in figure 12 ( a ,  b ) .  We see that the 
mixed mode always bifurcates from the ‘pure mode’ which is the least unstable on 
the basis of linear theory. This bifurcation leaves the pure mode stable so that a t  
sufficiently large Re,, both pure modes are possible stable equilibrium states. 
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However, in the absence of any finite-amplitude background noise we expect that the 
pure mode that is the most unstable on the basis of linear theory would be set up 
when the Reynolds number is gradually increased. 

Case ( c )  Here we consider the interaction of TSL and GU. For this case S,, S,, 7, are 
negative whilst v1 is positive. The relationship between the ratios of the coefficients 
1s : 

The bifurcation pictures are shown in figure 13 (a ,  b ) .  If the Gortler mode is the most 
unstable on the basis of linear theory, then there is no secondary bifurcation and the 
TS mode is never stable. When the TS wave bifurcates first, then it is initially stable 
before it suffers a secondary bifurcation to a stable mixed mode. The mixed mode 
then meets the ‘pure’ Gortler mode which changes from being unstable to stable. 
Thus, for both A > 0 and A < 0 a t  sufficiently large values of Re, the only stable state 
possible is that corresponding to a finite-amplitude Gortler vortex. Hence, the 
Gortler mode effectively prevents the finite-amplitude growth of the TS wave. 

6. Conclusions 
In  this paper we have considered the interaction of two types of perturbations in 

a curved channel flow : these are the travelling non-axisymmetric wave (TS) and the 
axisymmetric vortical perturbation referred to as the Gortler vortices. 

By using the Stuart-Watson approach, two coupled equations for the amplitudes 
of TS and the Gortler perturbations were obtained. Coefficients of these equations 
have been calculated for their interaction, from Reynolds numbers starting a t  the 
common critical value Re, for both the perturbations up to a value large enough, we 
think, to cover all the possible interactions. We have, however, concentrated our 
attention on those interactions that we think are significant in external flows. 

We have seen in the previous section that for Re close to Re, the only possible 
stable ‘pure state’ is Gortler vortices. For a finite range of Reynolds numbers, a 
mixed mode is possible, but in any experimental investigation of this problem, we 
expect this range to be too small to be detected. However, the threshold-amplitude 
effect associated with a finite-amplitude TS wave remains intact and indeed is 
augmented by the curvature. In  external flows such as a Blasius boundary layer or 
an attachment-line boundary layer, this effect, if repeated, would make these flows 
more sensitive to background noise. 

Consideration of the interaction between a TS perturbation corresponding to the 
lower branch of its neutral curve with a Gortler perturbation belonging to the lower 
branch of its neutral curve, shows that a stable finite-amplitude perturbation of 
either type can be set up depending on which one is most linearly unstable. The value 
of the radius ratios 7 determines which of the perturbations is most unstable. 

For the interaction of the TS perturbation corresponding to the lower arm of its 
neutral stability curve with the Gortler perturbation corresponding to the upper arm 
of its neutral stability curve, we find that the Gortler vortex prevents the occurrence 
of a finite-amplitude TS wave far from the neutral curve. When a TS wave is the 
most linearly unstable of the two perturbations, a finite-amplitude TS wave 
develops, the amplitude of which increases as the Reynolds number increases further 
from its value on the neutral curve until a ‘mixed’ mode appears. Here both the TS 
and Giirtler vortices have finite amplitudes. As Reynolds number increases further, 



Nonlinear interaction between Gortler vortices and Tollmien-Schlichting waves 591 

the mixed mode bifurcates into a stable Gortler mode. In  the case when the Gortler 
mode is the most linearly unstable, only a finite-amplitude Gortler state is possible 
as the Reynolds number increases from a value on the neutral curve. 

For external flows, an asymptotically self-consistent description of non-linear TS 
waves has been given by Smith (1979). Here the disturbance was described by 'triple- 
deck' theory and the streamwise scaling for the TS wave corresponds to  lower- 
branch TS waves in our problem. Further it was shown that lower-branch TS waves 
bifurcate supercritically, so we can expect that our results for the interaction of TSL 
waves and Gortler vortices in channel might have implications to the external flow 
problem. Of course, the effect of boundary-layer growth might negate the validity of 
us drawing these conclusions ; however, we believe that our calculations show what 
is the likely effect of the possible interactions involving TS waves and Gortler 
vortices. 

In  a later publication, we shall report the numerical simulations of the interaction 
between such perturbations in curved channel flow. 
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Appendix A 
Here the non zero components of the operators of (3.11) are given explicitly in 

terms of their row-column location, i.e. (1,2) will refer to  element in first row and 
second column. 

L,[a,, a,] is a 6 x 6 matrix 

h A 2  f ( r )  h 
( 3 , i )  = Re;a,, (3,3) = --, (3 ,6)  = - , z ~ s s - ~ z , +  Reoh--,, (4,4) = --, 

r r r 

Re, h 
r 

(4,5) = --do, (4 ,6)  = - a z ,  ( 5 , 2 )  = (6,3) = 1. 

T,[a,] is a 6 x 6 matrix: 

h 
(1,4) = --at, ( 2 , 5 )  = (3,6) = Reohat. 

Re, 
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L,[a,, a,] is a 6 x 6 matrix : 
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Re 2Re, 2 A2 Re f ( r )  Re 
( 1 , 2 )  = A d a , ,  ( i , 3 )  = -az, ( i , 4 )  = ---Re,,a,,-2La + - h L a  

( i , 5 )  = h2--a - - L a  

Re: r Re: Re: r Re: “ r Re: ” 

Re, 2 h2Re Re Re, 2 
Re:r2 ’ r2  Reg ” r Re: r2 

(2, 1) = A h a , ,  ( 2 , 4 )  = -----2a,, 

fC.1 f ( r )  Re 
r r r 

( 2 , s )  = Re,-M,, ( 3 , l )  = 2Re,Re,a,, (3 ,6)  = Re,h-d,, ( 4 , 5 )  = - L h d , .  

T,,[a,] is a 6 x 6 matrix: 

Re 
Reg 

(1,4) = L A C ) , ,  (2 ,s)  = Re,ha,, (3 ,6)  = Re,ha,. 

T,,[a,] is a 6 x 6 matrix : 

h 
( 1 , 4 )  =--a,, ( 2 , 5 )  = (3 ,6 )  = Re,ha,. 

Re0 

N,[a,, a,] {q  x q} is a 6-component column vector : 

V aw 
r ac 

V 
( 2 , l )  = h , ( 3 , l )  = Re,h-a,w+u- +wa,w. 

Appendix B 
Here we give the nonlinear terms of O(e3)  which form part of the coupled Landau 

equations. Note the presence of cubic terms such as 1X(7)I2 X ( 7 ) ,  etc. The lower-case 

Each of these elements is a function of 5. 
letters are elements of the vectors given in capitals, e.g. G = (gl,g2,g3,g4,g,,g6) T . 

(i) A” (contribution from N,) 

h 
r 

= - [2j5 u5 + 2c, ag*]X(7) IX(7)12a”, 

h 
r 

+ - [c, a: + c5 a: +j4 a5 +j ,  a,] X ( 7 )  IX(7)I2(%, 

+ [ - ikc, a,* + 2iku,* c5 + j 6  ika5]X(7) IX(7)I2c2, 

+ [c,u,* +a,*c,+j,a,+a,j,]X(7)IX(7)12a”2 

[ -ikc6a: +2ika,* ~,+j,ika,]X(7)IX(7)1~&, 
1 

Re: 
-- 
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+ [(c, 4 + a: c3) + (j, a3 + f34j3)I  x(7)lx(7)126a, 
+ [ -ikc,a,*+2ik~,*c,+j,ika,]X(7)IX(~)1~a"~ 

[ - imh, b: + btimh, + g5 imb, - imb, g,] X(7)I Y(~)1~a",  h 
Re, r 

-- 

+[b~ikh,+b,ikg5+ika,k,]X(~)~Y(~)~2a"z 

+Re,-[-imh, b,*+b,*imh,+g,imb,-imb,g,]X(~)~Y(~)~2~z h 
r 

h 
+ - ~ 2 ~ ~ 5 ~ , * + ~ 5 ~ 5 + ~ 5 ~ , ~ l ~ ~ 7 ~ 1 ~ ~ 7 ~ 1 2 a " 1  r 

+ [b,* iEh,+b,ikg,+k,ika,]X(~)1Y(~)1~a", 

+[h,b,*+b: h3+g, b3+b,g3+a3k4+a4k3]X(~)1Y(7)12a"3 

+-[-imh, b,*+b:imh,]X(7)1Y(7)12a"l 
h 

Re, r 

1 
Re; 

2A 

[b,* ikh, + b, ikg, + ika, k,]  X(7)I Y ( ~ ) 1 ~ 8 ,  -~ 

+ [h, b: + g4 b, + a, k,l X(7)l  Y ( 7 W 1  

1 
Re: 

h 
Re, r 

+-[b: ikh,+b,ikg,+ika, k , ]X(~)1Y(7)1~a"]  

+---[img,b,-imb,g,]X(7)1Y(~)12dl. 

( i i )  (contribution from N,) 

h 
r 

= +- [2d, b,* + 2k,  b,] Y ( T ) ~  Y(7)%, 

-h [ - i d ,  b: + 2imb,* d, + k, imb,] Y ( T ) (  Y(T)~%,  
Re, r 

+ [d4 b,* + b: dz + k4 bz + 6 4  kz] Y(7)I Y ( ~ ) l ' 6 ~  

Re h 
r 

+a [ - i d ,  b,* + 2imb,* d ,  + k, imb,] Y ( T ) ~  y(7)12& 

+ - [d, b,* + d, b: + k ,  b, + b, k,] Y(7)I Y(7)I2b", 
h 
r 
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hRe 
r 

+ L [ - i m d , b :  +2imb,*d,+k,imb,] Y ( ~ ) l Y ( 7 ) ~ 6 ,  

+ [d, b t  + bz d, + k, b, + b, k,] Y (7)l Y (7)I2b”, 

+- [ - imd, bz + 2imb: d, + k ,  imb,] Y ( T ) ~  Y(7)I2b”, 

+- [d, bX + k, b,] Y(7)I Y(7)I2& 

h 
Re, r 

2h 
Re2 r 
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